NCBI accession number.
Abstract
Related Items
Abstract
Extracellular electron transfer (EET) – the process by which microorganisms transfer electrons across their membrane(s) to/from solid-phase materials – has implications for a wide range of biogeochemically important processes in marine environments. Though EET is thought to play an important role in the oxidation of inorganic minerals by lithotrophic organisms, the mechanisms involved in the oxidation of solid particles are poorly understood. To explore the genetic basis of oxidative EET, we utilized genomic analyses and transposon insertion mutagenesis screens (Tn-seq) in the metabolically flexible, lithotrophic Alphaproteobacterium Thioclava electrotropha ElOx9T. The finished genome of this strain is 4.3 MB, and consists of 4,139 predicted ORFs, 54 contain heme binding motifs, and 33 of those 54 are predicted to localize to the cell envelope or have unknown localizations. To begin to understand the genetic basis of oxidative EET in ElOx9T, we constructed a transposon mutant library in semi-rich media which was comprised of >91,000 individual mutants encompassing >69,000 unique TA dinucleotide insertion sites. The library was subjected to heterotrophic growth on minimal media with acetate and autotrophic oxidative EET conditions on indium tin oxide coated glass electrodes poised at –278 mV vs. SHE or un-poised in an open circuit condition. We identified 528 genes classified as essential under these growth conditions. With respect to electrochemical conditions, 25 genes were essential under oxidative EET conditions, and 29 genes were essential in both the open circuit control and oxidative EET conditions. Though many of the genes identified under electrochemical conditions are predicted to be localized in the cytoplasm and lack heme binding motifs and/or homology to known EET proteins, we identified several hypothetical proteins and poorly characterized oxidoreductases that implicate a novel mechanism(s) for EET that warrants further study. Our results provide a starting point to explore the genetic basis of novel oxidative EET in this marine sediment microbe.
Related Items
Abstract
The subsurface is Earth’s largest reservoir of biomass. Micro‐organisms are the dominant lifeforms in this habitat, but the nature of their in situ activities remains largely unresolved. At the Deep Mine Microbial Observatory (DeMMO) located in the Sanford Underground Research Facility (SURF) in Lead, South Dakota (USA), we performed in situ electrochemical incubations designed to assess the potential for deep groundwater microbial communities to utilize extracellular electron transfer to support microbial respiration. DeMMO 4 was chosen for its stable geochemistry and microbial community. Graphite and indium tin oxide electrodes poised at −200 mV versus SHE were incubated along with open circuit controls and various minerals in a parallel flow reactor that split access to fluids across different treatments. From the patterns of net current over time (fluctuating between anodic and cathodic currents over the course of a few days to weeks) and the catalytic features measured using periodic cyclic voltammetry, evidence of both oxidative and reductive microbe‐electrode interactions was observed. The predominant catalytic activity ranged from −210 to −120 mV. The observed temporal variability in electrochemical activity was unexpected given the documented stability in major geochemical parameters. This suggests that the accessed fluids are more heterogeneous in electrochemically active microbial populations than previously predicted from the stable community composition. As previously reported, the fracture fluid and surface‐attached microbial communities at SURF differed significantly. However, only minimal differences in community composition were observed between poised potential electrodes, open circuit electrodes, and mineral incubations. These data support that in this environment the ability to attach to surfaces is a stronger driver of microbial community structure than the type or reactivity of the surface. We demonstrate that insight into specific activities can be gained from electrochemical methods, specifically chronoamperometry coupled with routine cyclic voltammetry, which provide a sensitive approach to evaluate microbial activities in situ.
Project Title | Uncovering novel mechanisms of extracellular electron uptake in subsurface-relevant marine bacterial isolates |
---|---|
Acronym | bacterial isolates electron uptake |
URL | https://www.bco-dmo.org/project/809081 |
Created | April 13, 2020 |
Modified | April 13, 2020 |
Project Description
Abstract (from C-DEBI, www.darkenergybiosphere.org) for subaward USC 104889896.
Though the Earth’s subsurface supports the largest reservoir of biomass on the planet, there are major questions as to how life in these environments persists, and/or what energy sources and sinks are utilized. Due to the dearth of knowledge surrounding lithotrophic or “rock eating” metabolisms, especially those that utilize solid phase minerals and/or are cryptic in nature, the potential role of these substrates as electron sources in many habitats remains unclear. This proposal seeks to improve our understanding of mineral-oxidation processes in a range of subsurface-relevant taxa. This work will utilize comparative genomics along with high throughput genetic screens to highlight genes involved in mineral oxidation in eight marine sediment microbes with unique electron uptake capabilities. These organisms are closely related to strains isolated from a wide range of marine sediments, and subsurface habitats. The outcomes of this work will, not only further our understanding of lithotrophic metabolisms, but the functional gene information gleaned will aid in the detection of microbe-mineral interactions using bioinformatic approaches. This work has the potential to enhance scientific participation in individuals underrepresented in STEM fields by funding an early career scientist, and aiding in the training of an undergraduate researcher.
Data Project Maintainers
Name | Affiliation | Role |
---|---|---|
Annette R. Rowe | University of Cincinnati (UC) | Principal Investigator |
Abstract
The Methanosarcinales, a lineage of cytochrome-containing methanogens, have recently been proposed to participate in direct extracellular electron transfer interactions within syntrophic communities. To shed light on this phenomenon, we applied electrochemical techniques to measure electron uptake from cathodes by Methanosarcina barkeri, which is an important model organism that is genetically tractable and utilizes a wide range of substrates for methanogenesis. Here, we confirm the ability of M. barkeri to perform electron uptake from cathodes and show that this cathodic current is linked to quantitative increases in methane production. The underlying mechanisms we identified include, but are not limited to, a recently proposed association between cathodes and methanogen-derived extracellular enzymes (e.g., hydrogenases) that can facilitate current generation through the formation of reduced and diffusible methanogenic substrates (e.g., hydrogen). However, after minimizing the contributions of such extracellular enzymes and using a mutant lacking hydrogenases, we observe a lower-potential hydrogen-independent pathway that facilitates cathodic activity coupled to methane production in M. barkeri. Our electrochemical measurements of wild-type and mutant strains point to a novel and hydrogenase-free mode of electron uptake with a potential near −484 mV versus standard hydrogen electrode (SHE) (over 100 mV more reduced than the observed hydrogenase midpoint potential under these conditions). These results suggest that M. barkeri can perform multiple modes (hydrogenase-mediated and free extracellular enzyme-independent modes) of electrode interactions on cathodes, including a mechanism pointing to a direct interaction, which has significant applied and ecological implications.
Abstract
Extracellular electron transfer (EET) allows microbes to acquire energy from solid state electron acceptors and donors, such as environmental minerals. This process can also be harnessed at electrode interfaces in bioelectrochemical technologies including microbial fuel cells, microbial electrosynthesis, bioremediation, and wastewater treatment. Improving the performance of these technologies will benefit from a better fundamental understanding of EET in diverse microbial systems. While the mechanisms of outward (i.e. microbe-to-anode) EET is relatively well characterized, specifically in a few metal-reducing bacteria, the reverse process of inward EET from redox-active minerals or cathodes to bacteria remains poorly understood. This knowledge gap stems, at least partly, from the lack of well-established model organisms and general difficulties associated with laboratory studies in existing model systems. Recently, a sulfur oxidizing marine microbe, Thioclava electrotropha ElOx9, was demonstrated to perform electron uptake from cathodes. However, a detailed analysis of the electron uptake pathways has yet to be established, and electrochemical characterization has been limited to aerobic conditions. Here, we report a detailed amperometric and voltammetric characterization of ElOx9 cells coupling cathodic electron uptake to reduction of nitrate as the sole electron acceptor, even in the absence of any added inorganic carbon source. By comparing this cellular activity to spent media controls and using medium exchange experiments, we demonstrate that one of the pathways by which ElOx9 facilitates inward EET is by a direct-contact mechanism through a redox center with a formal potential of −94 mV vs SHE, rather than soluble intermediate electron carriers. In addition to the implications for understanding microbial sulfur oxidation in marine environments, this study highlights the potential for ElOx9 to serve as a convenient and readily culturable model organism for understanding the molecular mechanisms of inward EET.
Related Items
Abstract
The diversity of microbially mediated redox processes that occur in marine sediments is likely underestimated, especially with respect to the metabolisms that involve solid substrate electron donors or acceptors. Though electrochemical studies that utilize poised potential electrodes as a surrogate for solid substrate or mineral interactions have shed some much needed light on these areas, these studies have traditionally been limited to one redox potential or metabolic condition. This work seeks to uncover the diversity of microbes capable of accepting cathodic electrons from a marine sediment utilizing a range of redox potentials, by coupling electrochemical enrichment approaches to microbial cultivation and isolation techniques. Five lab-scale three-electrode electrochemical systems were constructed, using electrodes that were initially incubated in marine sediment at cathodic or electron-donating voltages (five redox potentials between −400 and −750 mV versus Ag/AgCl) as energy sources for enrichment. Electron uptake was monitored in the laboratory bioreactors and linked to the reduction of supplied terminal electron acceptors (nitrate or sulfate). Enriched communities exhibited differences in community structure dependent on poised redox potential and terminal electron acceptor used. Further cultivation of microbes was conducted using media with reduced iron (Fe0, FeCl2) and sulfur (S0) compounds as electron donors, resulting in the isolation of six electrochemically active strains. The isolates belong to the genera Vallitalea of the Clostridia, Arcobacter of the Epsilonproteobacteria, Desulfovibrio of the Deltaproteobacteria, and Vibrio and Marinobacter of the Gammaproteobacteria. Electrochemical characterization of the isolates with cyclic voltammetry yielded a wide range of midpoint potentials (99.20 to −389.1 mV versus Ag/AgCl), indicating diverse metabolic pathways likely support the observed electron uptake. Our work demonstrates culturing under various electrochemical and geochemical regimes allows for enhanced cultivation of diverse cathode-oxidizing microbes from one environmental system. Understanding the mechanisms of solid substrate oxidation from environmental microbes will further elucidation of the ecological relevance of these electron transfer interactions with implications for microbe-electrode technologies.
Related Items
Abstract
Extracellular electron transport (EET) is a microbial process that allows microorganisms to transport electrons to and from insoluble substrates outside of the cell. Although progress has been made in understanding how microbes transfer electrons to insoluble substrates, the process of receiving electrons has largely remained unexplored. We investigated redox potentials favourable for donating electrons to dissolved and insoluble components in Catalina Harbor marine sediment by combining electrochemical techniques with geochemistry and molecular methods. Working electrodes buried in sediment microcosms were poised at seven redox potentials between −300 and −750 mV versus Ag/AgCl using a three‐electrode system. In electrode biofilms recovered after 2‐month incubations, overall community diversity increased with more negative redox potentials. Abundances of known EET‐capable groups (e.g., Alteromonadales and Desulfuromonadales) varied with redox potential. Motility and chemotaxis genes were found in greater abundance in electrode communities, suggesting a possible selective advantage of these pathways for colonization and utilization of the electrode. Our enrichments demonstrated the validity of this approach in capturing groups known, as well as novel groups (e.g., Campylobacterales) that perform EET. The diverse nature of the enriched cathode communities suggest that insoluble substrate oxidation may be a critical, although poorly described microbial metabolic process in marine sediment.
Related Items
Abstract
How microorganisms survive and persist in subsurface environments is a fundamental question to the C-DEBI community. The main driver of this research is to investigate the potential for microorganisms to utilize extracellular electron transfer as a source for acquiring electrons/reducing power from minerals—a strategy that has been implicated as important for microbes in subsurface ecosystems, but that has been challenging to study due to the dearth of known mechanisms and organism identified with this capability. With funding from this research grant we are identifying candidate biomarkers for mineral oxidation processes in marine sediment microbes, previously isolated using electro-cultivation techniques as part of a C-DEBI funded postdoctoral fellowship. To date we have completed the genomes of ten organisms from eight different genera. We have also performed a pilot TN-seq study and are amid analyzing a statistically robust dataset from the same organism, Thioclava electrotropha ElOx9. Through the work of several undergraduate researchers, we have developed conjugation techniques for introducing a plasmid into organism and have been successful at removing genes in T. electrotrophica via homologous recombination. We are also in the process of developing CRISPR CAS-9 based techniques for genome editing in this strain. In our future work, application of these techniques will be applied to confirm activity of the gene(s) involved in EET that are being identified using high throughput genetic screens. The results of this work are presently being synthesized into two publications, and the results stemming from this work are the foundation of a pending NSF-Career Proposal.
Related Items
Abstract
A taxonomic and physiologic characterization was carried out on Thioclava strain ElOx9T, which was isolated from a bacterial consortium enriched on electrodes poised at electron donating potentials. The isolate is Gram-negative, catalase-positive and oxidase-positive; the cells are motile short rods. The bacterium is facultatively anaerobic with the ability to utilize nitrate as an electron acceptor. Autotrophic growth with H2 and S0 (oxidized to sulfate) was observed. The isolate also grows heterotrophically with organic acids and sugars. Growth was observed at salinities from 0 to 10% NaCl and at temperatures from 15 to 41 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs in the genus Thioclava ; it had the highest sequence similarity of 98.8 % to Thioclava atlantica 13D2W-2T, followed by Thioclava dalianensis DLFJ1-1T with 98.5 % similarity, Thioclava pacifica TL 2T with 97.7 % similarity, and then Thioclava indica DT23-4T with 96.9 %. All other sequence similarities were below 97 % to characterized strains. The digital DNA–DNA hybridization estimated when compared to T. atlantica 13D2W-2T, T. dalianensis DLFJ1-1T, T. pacifica TL 2T and T. indica DT23-4T were 15.8±2.1, 16.7+2.1, 14.3±1.9 and 18.3±2.1 %. The corresponding average nucleotide identity values between these strains were determined to be 65.1, 67.8, 68.4 and 64.4 %, respectively. The G+C content of the chromosomal DNA is 63.4 mol%. Based on these results, a novel species Thioclava electrotropha sp. nov. is proposed, with the type strain ElOx9T (=DSM 103712T=ATCC TSD-100T).
Related Items
Abstract
While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited.
Related Items
Abstract
Serpentinization is a geologic process that produces highly reduced, hydrogen-rich fluids that support microbial communities under high pH conditions. We investigated the activity of microbes capable of extracellular electron transfer in a terrestrial serpentinizing system known as “The Cedars”. Measuring current generation with an on-site two-electrode system, we observed daily oscillations in current with the current maxima and minima occurring during daylight hours. Distinct members of the microbial community were enriched. Current generation in lab-scale electrochemical reactors did not oscillate, but was correlated with carbohydrate amendment in Cedars-specific minimal media. Gammaproteobacteria and Firmicutes were consistently enriched from lab electrochemical systems on δ-MnO2 and amorphous Fe(OH)3 at pH 11. However, isolation of an electrogenic strain proved difficult as transfer cultures failed to grow after multiple rounds of media transfer. Lowering the bulk pH in the media allowed us to isolate a Firmicutes strain (Paenibacillus sp.). This strain was capable of electrode and mineral reduction (including magnetite) at pH 9. This report provides evidence of the in situ activity of microbes using extracellular substrates as sinks for electrons at The Cedars, but also highlights the potential importance of community dynamics for supporting microbial life through either carbon fixation and/or moderating pH stress.
Related Items
Abstract
We report measurements of resolved 12CH2D2 and 13CH3D at natural abundances in a variety of methane gases produced naturally and in the laboratory. The ability to resolve 12CH2D2 from 13CH3D provides unprecedented insights into the origin and evolution of CH4. The results identify conditions under which either isotopic bond order disequilibrium or equilibrium are expected. Where equilibrium obtains, concordant Δ12CH2D2 and Δ13CH3D temperatures can be used reliably for thermometry. We find that concordant temperatures do not always match previous hypotheses based on indirect estimates of temperature of formation nor temperatures derived from CH4/H2 D/H exchange, underscoring the importance of reliable thermometry based on the CH4 molecules themselves. Where Δ12CH2D2 and Δ13CH3D values are inconsistent with thermodynamic equilibrium, temperatures of formation derived from these species are spurious. In such situations, while formation temperatures are unavailable, disequilibrium isotopologue ratios nonetheless provide novel information about the formation mechanism of the gas and the presence or absence of multiple sources or sinks. In particular, disequilibrium isotopologue ratios may provide the means for differentiating between methane produced by abiotic synthesis vs. biological processes. Deficits in 12CH2D2 compared with equilibrium values in CH4 gas made by surface-catalyzed abiotic reactions are so large as to point towards a quantum tunneling origin. Tunneling also accounts for the more moderate depletions in 13CH3D that accompany the low 12CH2D2 abundances produced by abiotic reactions. The tunneling signature may prove to be an important tracer of abiotic methane formation, especially where it is preserved by dissolution of gas in cool hydrothermal systems (e.g., Mars). Isotopologue signatures of abiotic methane production can be erased by infiltration of microbial communities, and Δ12CH2D2 values are a key tracer of microbial recycling.
URL | https://www.bco-dmo.org/dataset/636859 |
---|---|
Download URL | https://www.bco-dmo.org/dataset/636859/data/download |
Media Type | text/tab-separated-values |
Created | January 28, 2016 |
Modified | August 19, 2016 |
State | Final no updates expected |
Brief Description | 16S rRNA Sequences from cathode-oxidizing lithoprophic isolates (COLI) from Catalina Harbor Marine sediments. |
Acquisition Description
The microbes isolated during this work were originally enriched from Catalina Harbor sediments from electrodes poised at reducing or electron donating redox potentials. Isolates are obtained from these enrichements based on the oxidation of elemental sulfur, elemental iron, or amorphous FeS. Approximately 30 isolates from 8 phylotypes were obtained. Ribosomal 16S sequences were obtained for all isolates using direct 16S rRNA amplification from pure culture DNA extracts. The universal bacterial primers 27F (5′-AGAGTTTGAT CCTGGCTCAG) and 1492R (5′-GGTTACCTTGTTACGACTT) were used. Approximately 20–40 ng of PCR product from each isolate were purified with a DNA Clean Concentrator Kit (ZymoResearch, Irvine, CA), and Sanger sequencing was per- formed viaGenewiz (La Jolla,CA) or BeckmanCoulter Genomics (Danvers, MA).
Processing Description
These nearly full length sequences were quality checked and assembled using Geneious 7.1© (Biomatters, New Zealand). Alignment of sequences against the Silva database was performed using the SINA aligner (v 1.2.11) (Pruesse et al., 2012; Quast et al., 2013). Nearest cultured representative microbes were also obtained through the Silva database (Quast et al., 2013). Maximum-likelihood estimation trees were constructed from alignments of sequences and nearest neighbors using RaxML (v.8) (Stamatakis, 2014) to assign taxonomy. A identity of 97% was used to designate a specific genera for a given sequence. All full length sequences have been deposited to Genbank (accession numbers KM088025-KM0 88033).
BCO-DMO Processing:
– separated location into lat and lon columns;
– converted degrees and decimal minutes to decimal degrees;
– replaced commas with semi-colons;
– replaces spaces with underscores;
– modified parameter names to conform with BCO-DMO naming conventions.
Instruments
Parameters
a taxonomic binomial that consists of a genus name followed by the species name of an organism
latitude, in decimal degrees, North is positive, negative denotes South; Reported in some datasets as degrees, minutes
longitude, in decimal degrees, East is positive, negative denotes West; Reported in some datsets as degrees, minutes
Description of sequencing method.
brief description, open ended, specific to the data set in which it appears
Hyperlink to NCBI.
Dataset Maintainers
Name | Affiliation | Contact |
---|---|---|
Annette R. Rowe | University of Southern California (USC) | ✓ |
Kenneth H. Nealson | University of Southern California (USC) | ✓ |
Shannon Rauch | University of Southern California (USC) | |
Shannon Rauch | Woods Hole Oceanographic Institution (WHOI BCO-DMO) |
BCO-DMO Project Info
Project Title | Passing electrons through marine sediments: Cultivation and characterization of microbes that utilize extracellular electron transports |
---|---|
Acronym | PassElectronsThruMarSed |
URL | https://www.bco-dmo.org/project/636843 |
Created | January 28, 2016 |
Modified | January 28, 2016 |
Project Description
Description from C-DEBI:
One of the major questions in subsurface biology is understanding how microrganisms in the subsurface are “making a living”. However, there is a dearth of knowledge concerning the physiology of major microbial groups that likely dominate the subsurface, including the lithotrophic or “rock-eating” microbes. This, in turn, makes one of the major research goals of C-DEBI, identifying and assessing activity in the deep subsurface biosphere, extremely difficult for these processes (i.e. not identified via “meta-omic” based studies) and in many cases these metabolisms are probably overlooked. Through my C-DEBI fellowship I was able to develop techniques for electrochemical cultivation of lithotrophic microbes to help facilitate identification and further study of microbial groups with these abilities. As part of this work I targeted cultivation of several groups of facultative lithotrophs that are phylogenetically related to organisms that are genetically tractable, and I’m currently in the process of building draft genomes for these microbes. It is my goal to use these microbes as model systems for understanding and biochemically characterizing the physiology of lithotrophs that will lead to better genetic markers to identify these physiologies in the environment. The work done through this fellowship has currently resulted in one publication in “Frontiers in Microbiology” on the electrochemical cultivation and isolation of facultative lithotrophs and tracking the physiology of cathode oxidizing microbes is the publication that will be submitted this summer. One of the most exciting results from this work is that the majority of microbes isolated from the one marine sediment tested, appear to have different redox potential where they catalyze the oxidation of a cathode suggesting a variety of different protein pathways used. This highlights both the unknown nature of these processes and the diversity of potential lithotrophic metabolic pathways.
This project was funded by a C-DEBI Postdoctoral Fellowship.
Data Project Maintainers
Name | Affiliation | Role |
---|---|---|
Annette R. Rowe | University of Southern California (USC) | Principal Investigator |
Kenneth H. Nealson | University of Southern California (USC) | Co-Principal Investigator |
Related Items
Project Title | Passing electrons through marine sediments: Cultivation and characterization of microbes that utilize extracellular electron transports |
---|---|
Acronym | PassElectronsThruMarSed |
URL | https://www.bco-dmo.org/project/636843 |
Created | January 28, 2016 |
Modified | January 28, 2016 |
Project Description
Description from C-DEBI:
One of the major questions in subsurface biology is understanding how microrganisms in the subsurface are “making a living”. However, there is a dearth of knowledge concerning the physiology of major microbial groups that likely dominate the subsurface, including the lithotrophic or “rock-eating” microbes. This, in turn, makes one of the major research goals of C-DEBI, identifying and assessing activity in the deep subsurface biosphere, extremely difficult for these processes (i.e. not identified via “meta-omic” based studies) and in many cases these metabolisms are probably overlooked. Through my C-DEBI fellowship I was able to develop techniques for electrochemical cultivation of lithotrophic microbes to help facilitate identification and further study of microbial groups with these abilities. As part of this work I targeted cultivation of several groups of facultative lithotrophs that are phylogenetically related to organisms that are genetically tractable, and I’m currently in the process of building draft genomes for these microbes. It is my goal to use these microbes as model systems for understanding and biochemically characterizing the physiology of lithotrophs that will lead to better genetic markers to identify these physiologies in the environment. The work done through this fellowship has currently resulted in one publication in “Frontiers in Microbiology” on the electrochemical cultivation and isolation of facultative lithotrophs and tracking the physiology of cathode oxidizing microbes is the publication that will be submitted this summer. One of the most exciting results from this work is that the majority of microbes isolated from the one marine sediment tested, appear to have different redox potential where they catalyze the oxidation of a cathode suggesting a variety of different protein pathways used. This highlights both the unknown nature of these processes and the diversity of potential lithotrophic metabolic pathways.
This project was funded by a C-DEBI Postdoctoral Fellowship.
Data Project Maintainers
Name | Affiliation | Role |
---|---|---|
Annette R. Rowe | University of Southern California (USC) | Principal Investigator |
Kenneth H. Nealson | University of Southern California (USC) | Co-Principal Investigator |
Related Items
Abstract
Little is known about the importance and/or mechanisms of biological mineral oxidation in sediments, partially due to the difficulties associated with culturing mineral-oxidizing microbes. We demonstrate that electrochemical enrichment is a feasible approach for isolation of microbes capable of gaining electrons from insoluble minerals. To this end we constructed sediment microcosms and incubated electrodes at various controlled redox potentials. Negative current production was observed in incubations and increased as redox potential decreased (tested −50 to −400 mV vs. Ag/AgCl). Electrode-associated biomass responded to the addition of nitrate and ferric iron as terminal electron acceptors in secondary sediment-free enrichments. Elemental sulfur, elemental iron and amorphous iron sulfide enrichments derived from electrode biomass demonstrated products indicative of sulfur or iron oxidation. The microbes isolated from these enrichments belong to the genera Halomonas, Idiomarina, Marinobacter, and Pseudomonas of the Gammaproteobacteria, and Thalassospira and Thioclava from the Alphaproteobacteria. Chronoamperometry data demonstrates sustained electrode oxidation from these isolates in the absence of alternate electron sources. Cyclic voltammetry demonstrated the variability in dominant electron transfer modes or interactions with electrodes (i.e., biofilm, planktonic or mediator facilitated) and the wide range of midpoint potentials observed for each microbe (from 8 to −295 mV vs. Ag/AgCl). The diversity of extracellular electron transfer mechanisms observed in one sediment and one redox condition, illustrates the potential importance and abundance of these interactions. This approach has promise for increasing our understanding the extent and diversity of microbe mineral interactions, as well as increasing the repository of microbes available for electrochemical applications.
Related Items
Abstract
One of the major questions in subsurface biology is understanding how microrganisms in the subsurface are “making a living”. However, there is a dearth of knowledge concerning the physiology of major microbial groups that likely dominate the subsurface, including the lithotrophic or “rock-eating” microbes. This, in turn, makes one of the major research goals of C-DEBI, identifying and assessing activity in the deep subsurface biosphere, extremely difficult for these processes (i.e. not identified via “meta-omic” based studies) and in many cases these metabolisms are probably overlooked. Through my C-DEBI fellowship I was able to develop techniques for electrochemical cultivation of lithotrophic microbes to help facilitate identification and further study of microbial groups with these abilities. As part of this work I targeted cultivation of several groups of facultative lithotrophs that are phylogenetically related to organisms that are genetically tractable, and I’m currently in the process of building draft genomes for these microbes. It is my goal to use these microbes as model systems for understanding and biochemically characterizing the physiology of lithotrophs that will lead to better genetic markers to identify these physiologies in the environment. The work done through this fellowship has currently resulted in one publication in Frontiers in Microbiology on the electrochemical cultivation and isolation of facultative lithotrophs and tracking the physiology of cathode oxidizing microbes is the publication that will be submitted this summer. One of the most exciting results from this work is that the majority of microbes isolated from the one marine sediment tested, appear to have different redox potential where they catalyze the oxidation of a cathode suggesting a variety of different protein pathways used. This highlights both the unknown nature of these processes and the diversity of potential lithotrophic metabolic pathways.