Extracellular electron transport (EET) is a microbial process that allows microorganisms to transport electrons to and from insoluble substrates outside of the cell. Although progress has been made in understanding how microbes transfer electrons to insoluble substrates, the process of receiving electrons has largely remained unexplored. We investigated redox potentials favourable for donating electrons to dissolved and insoluble components in Catalina Harbor marine sediment by combining electrochemical techniques with geochemistry and molecular methods. Working electrodes buried in sediment microcosms were poised at seven redox potentials between −300 and −750 mV versus Ag/AgCl using a three‐electrode system. In electrode biofilms recovered after 2‐month incubations, overall community diversity increased with more negative redox potentials. Abundances of known EET‐capable groups (e.g., Alteromonadales and Desulfuromonadales) varied with redox potential. Motility and chemotaxis genes were found in greater abundance in electrode communities, suggesting a possible selective advantage of these pathways for colonization and utilization of the electrode. Our enrichments demonstrated the validity of this approach in capturing groups known, as well as novel groups (e.g., Campylobacterales) that perform EET. The diverse nature of the enriched cathode communities suggest that insoluble substrate oxidation may be a critical, although poorly described microbial metabolic process in marine sediment.