CENTER for DARK ENERGY BIOSPHERE INVESTIGATIONS
Menu
  • About
    • Introduction
    • People
    • Spotlight
    • Ethics Policy
    • Data Access & Policy
    • Executive Documents
    • C-DEBI Branded Resources
    • Support C-DEBI
    • Contact Us
  • Research
    • Overview
    • Research Themes
    • Field Sites
    • Facilities, Equipment & Technology
    • Research Support
      • Research Grants
      • Graduate Fellowships
      • Postdoctoral Fellowships
      • Research Exchanges
      • Community Workshops
      • Funded Projects
  • Education
    • Overview
    • For Teachers
    • For High School Students
    • For Undergraduates
      • Overview
      • GEM Summer Course
      • C4 Research Experience
      • CC-RISE Research Internship
      • GGURE Research Experience
      • Partnering Organizations
    • For Graduates & Postdocs
    • For Everyone
    • Education Grants
  • Resources
    • Peer-Reviewed Publications
    • Project Data
    • Protocols
    • Subseafloor Cultures Database
    • Videos
    • Mailing List & Newsletter
    • Meetings & Workshops
    • Networked Speaker Series
    • Professional Development Webinars
    • How to Get Deep Biosphere Samples
Awards > Research Grants
Temperature and pressure as microbial physiological variables in low-energy deep subseafloor habitats
PI: Alberto Robador (University of Hawaii)
Current Placement: Postdoc, USC, 2012-
Amount: $49,239.10
Award Dates: May 1, 2011 — April 30, 2013

The proposed work intends to specifically characterize the temperature and pressure as microbial physiological variables and explore quantitatively and qualitatively, the metabolic capacities of single microbial cells in deeply buried habitats. We hypothesize that the microbial physiological responses to ambient temperatures may be used to characterize the nature, in terms of the geographical origin, of the microorganisms present in deeply buried habitats. A high pressure thermal gradient system will be used to study the pressure and temperature relationships of microbial metabolism in basaltic fluids. Pulse-chase incubation experiments using radio- as well as stable isotope labeled substrates will be performed in order to quantify relevant metabolic processes rates under energy limiting conditions and identify potential isotopic effects during specific metabolic steps. In addition, voltammetric measurements will be conducted to potentially quantify real-time changes on manganese, iron and sulfur species of intermediate oxidation state in samples incubated using the high pressure thermal gradient system. Nanometer-scale secondary ion mass spectrometry (NanoSIMS) will also be used in combination with halogen in situ hybridization (HISH-SIMS) for simultaneous quantification of cell-specific rates and phylogenetic identification under different temperature and pressure regimes. We expect that the physiological characterization of microorganisms as a function of temperature and pressure in the basement fluids will help to elucidate dispersal mechanisms that structure microbial diversity.

Related Items

Publications
Publications > Journal Article
Published: January 14, 2015
Frontiers in Microbiology
Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust
Authors: Alberto Robador, Sean P. Jungbluth, Douglas E. LaRowe, Robert M. Bowers, Michael S. Rappé, Jan P. Amend, James P. Cowen
C-DEBI Contribution Number: 249

About C-DEBI  |  Our Research  |  Education & Outreach  |  Resources  |
Contact Us  |  Join Our Mailing List  |  Find Us On Facebook  |  Follow us on Twitter
© 2009-2019 Center for Dark Energy Biosphere Investigations (C-DEBI)

SUPPORT C-DEBI TODAY |  National Science Foundation