CENTER for DARK ENERGY BIOSPHERE INVESTIGATIONS
Menu
  • About
    • Introduction
    • People
    • Spotlight
    • Ethics Policy
    • Data Access & Policy
    • Executive Documents
    • C-DEBI Branded Resources
    • Support C-DEBI
    • Contact Us
  • Research
    • Overview
    • Research Themes
    • Field Sites
    • Facilities, Equipment & Technology
    • Research Support
      • Research Grants
      • Graduate Fellowships
      • Postdoctoral Fellowships
      • Research Exchanges
      • Community Workshops
      • Funded Projects
  • Education
    • Overview
    • For Teachers
    • For High School Students
    • For Undergraduates
      • Overview
      • GEM Summer Course
      • C4 Research Experience
      • CC-RISE Research Internship
      • GGURE Research Experience
      • Partnering Organizations
    • For Graduates & Postdocs
    • For Everyone
    • Education Grants
  • Resources
    • Peer-Reviewed Publications
    • Project Data
    • Protocols
    • Subseafloor Cultures Database
    • Videos
    • Mailing List & Newsletter
    • Meetings & Workshops
    • Networked Speaker Series
    • Professional Development Webinars
    • How to Get Deep Biosphere Samples

Person: Goichiro Uramoto

Order
Date Desc
Date Asc
Title Asc
Title Desc
Publications > Journal Article
Published: March 16, 2015
Nature Geoscience
Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments
Authors: Steven L. D’Hondt, Fumio Inagaki, Carlos A. Alvarez Zarikian, Lewis J. Abrams, Nathalie Dubois, Tim Engelhardt, Helen Evans, Timothy Ferdelman, Britta Gribsholt, Robert N. Harris, Bryce W Hoppie, Jung-Ho Hyun, Jens Kallmeyer, Jinwook Kim, Jill E. Lynch, Claire C. McKinley, Satoshi Mitsunobu, Yuki Morono, Richard W. Murray, Robert Pockalny, Justine Sauvage, Takaya Shimono, Fumito Shiraishi, David C. Smith, Christopher E. Smith-Duque, Arthur J. Spivack, Bjorn Olav Steinsbu, Yohey Suzuki, Michal Szpak, Laurent Toffin, Goichiro Uramoto, Yasuhiko T. Yamaguchi, Guoliang Zhang, Xiao-Hua Zhang, Wiebke Ziebis
C-DEBI Contribution Number: 254
Publications > Journal Article
Nature Geoscience
Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments
Authors: Steven L. D’Hondt, Fumio Inagaki, Carlos A. Alvarez Zarikian, Lewis J. Abrams, Nathalie Dubois, Tim Engelhardt, Helen Evans, Timothy Ferdelman, Britta Gribsholt, Robert N. Harris, Bryce W Hoppie, Jung-Ho Hyun, Jens Kallmeyer, Jinwook Kim, Jill E. Lynch, Claire C. McKinley, Satoshi Mitsunobu, Yuki Morono, Richard W. Murray, Robert Pockalny, Justine Sauvage, Takaya Shimono, Fumito Shiraishi, David C. Smith, Christopher E. Smith-Duque, Arthur J. Spivack, Bjorn Olav Steinsbu, Yohey Suzuki, Michal Szpak, Laurent Toffin, Goichiro Uramoto, Yasuhiko T. Yamaguchi, Guoliang Zhang, Xiao-Hua Zhang, Wiebke Ziebis
Published: March 16, 2015
C-DEBI Contribution Number: 254

Abstract

The depth of oxygen penetration into marine sediments differs considerably from one region to another. In areas with high rates of microbial respiration, O2 penetrates only millimetres to centimetres into the sediments, but active anaerobic microbial communities are present in sediments hundreds of metres or more below the sea floor. In areas with low sedimentary respiration, O2 penetrates much deeper but the depth to which microbial communities persist was previously unknown. The sediments underlying the South Pacific Gyre exhibit extremely low areal rates of respiration. Here we show that, in this region, microbial cells and aerobic respiration persist through the entire sediment sequence to depths of at least 75 metres below sea floor. Based on the Redfield stoichiometry of dissolved O2 and nitrate, we suggest that net aerobic respiration in these sediments is coupled to oxidation of marine organic matter. We identify a relationship of O2 penetration depth to sedimentation rate and sediment thickness. Extrapolating this relationship, we suggest that oxygen and aerobic communities may occur throughout the entire sediment sequence in 15–44% of the Pacific and 9–37% of the global sea floor. Subduction of the sediment and basalt from these regions is a source of oxidized material to the mantle.
Source: http://dx.doi.org/10.1038/ngeo2387

About C-DEBI  |  Our Research  |  Education & Outreach  |  Resources  |
Contact Us  |  Join Our Mailing List  |  Find Us On Facebook  |  Follow us on Twitter
© 2009-2019 Center for Dark Energy Biosphere Investigations (C-DEBI)

SUPPORT C-DEBI TODAY |  National Science Foundation