CENTER for DARK ENERGY BIOSPHERE INVESTIGATIONS
Menu
  • About
    • Introduction
    • People
    • Spotlight
    • Ethics Policy
    • Data Access & Policy
    • Executive Documents
    • C-DEBI Branded Resources
    • Support C-DEBI
    • Contact Us
  • Research
    • Overview
    • Research Themes
    • Field Sites
    • Facilities, Equipment & Technology
    • Research Support
      • Research Grants
      • Graduate Fellowships
      • Postdoctoral Fellowships
      • Research Exchanges
      • Community Workshops
      • Funded Projects
  • Education
    • Overview
    • For Teachers
    • For High School Students
    • For Undergraduates
      • Overview
      • GEM Summer Course
      • C4 Research Experience
      • CC-RISE Research Internship
      • GGURE Research Experience
      • Partnering Organizations
    • For Graduates & Postdocs
    • For Everyone
    • Education Grants
  • Resources
    • Peer-Reviewed Publications
    • Project Data
    • Protocols
    • Subseafloor Cultures Database
    • Videos
    • Mailing List & Newsletter
    • Meetings & Workshops
    • Networked Speaker Series
    • Professional Development Webinars
    • How to Get Deep Biosphere Samples

Person: Lucy C. Stewart

Order
Date Desc
Date Asc
Title Asc
Title Desc
Publications > Journal Article
Published: March 6, 2019
The ISME Journal
Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents
Authors: Lucy C. Stewart, Christopher K. Algar, Caroline S. Fortunato, Benjamin I. Larson, Joseph J. Vallino, Julie A. Huber, David A. Butterfield, James F. Holden
C-DEBI Contribution Number: 464
Publications > Journal Article
The ISME Journal
Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents
Authors: Lucy C. Stewart, Christopher K. Algar, Caroline S. Fortunato, Benjamin I. Larson, Joseph J. Vallino, Julie A. Huber, David A. Butterfield, James F. Holden
Published: March 6, 2019
C-DEBI Contribution Number: 464

Abstract

The size and biogeochemical impact of the subseafloor biosphere in oceanic crust remain largely unknown due to sampling limitations. We used reactive transport modeling to estimate the size of the subseafloor methanogen population, volume of crust occupied, fluid residence time, and nature of the subsurface mixing zone for two low-temperature hydrothermal vents at Axial Seamount. Monod CH4 production kinetics based on chemostat H2 availability and batch-culture Arrhenius growth kinetics for the hyperthermophile Methanocaldococcus jannaschii and thermophile Methanothermococcus thermolithotrophicus were used to develop and parameterize a reactive transport model, which was constrained by field measurements of H2, CH4, and metagenome methanogen concentration estimates in 20–40 °C hydrothermal fluids. Model results showed that hyperthermophilic methanogens dominate in systems where a narrow flow path geometry is maintained, while thermophilic methanogens dominate in systems where the flow geometry expands. At Axial Seamount, the residence time of fluid below the surface was 29–33 h. Only 1011 methanogenic cells occupying 1.8–18 m3 of ocean crust per m2 of vent seafloor area were needed to produce the observed CH4 anomalies. We show that variations in local geology at diffuse vents can create fluid flow paths that are stable over space and time, harboring persistent and distinct microbial communities.
Source: http://dx.doi.org/10.1038/s41396-019-0382-3

About C-DEBI  |  Our Research  |  Education & Outreach  |  Resources  |
Contact Us  |  Join Our Mailing List  |  Find Us On Facebook  |  Follow us on Twitter
© 2009-2019 Center for Dark Energy Biosphere Investigations (C-DEBI)

SUPPORT C-DEBI TODAY |  National Science Foundation