Abstract
This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO2 partial pressures. In all scenarios, AOM is exergonic, ranging from −31 to −135 kJ/mol CH4. A reaction transport model was constructed to examine how environmentally relevant parameters such as advection velocity, reactant concentrations, and biomass production rate affect the spatial and temporal dependences of AOM reaction rates. Two geologically supported models for ancient martian AOM are presented: a sulfate-rich groundwater with methane produced from serpentinization by-products, and acid-sulfate fluids with methane from basalt alteration. The simulations presented in this study indicate that AOM could have been a feasible metabolism on ancient Mars, and fossil or isotopic evidence of this metabolic pathway may persist beneath the surface and in surface exposures of eroded ancient terrains.