URLhttps://www.bco-dmo.org/dataset/816527
Download URLhttps://www.bco-dmo.org/dataset/816527/data/download
Media Type text/tab-separated-values
Created June 23, 2020
Modified June 30, 2020
State Preliminary and in progress

Acquisition Description

Location: North Atlantic, western flank of the mid-Atlantic Ridge 22.75589 N 46.08125 W

Methodology:

Prior to the extraction, we freeze-dried, ground and sieved sediment samples to less than 125 μm (Ruttenberg 1992). For a given sample, we weighed four sample replicates (2 g) and placed each in 250 mL HDPE bottles. Sodium dithionite (F.W. 147.12 g/mol; 7.4 g) was added to each sample split, followed by 200 mL of citrate-bicarbonate solution (pH 7.6). This step produces effervescence, so the solution should be added slowly to the sample. We shook samples for 8 h and then centrifuged them at 3,700 rpm for 15 min. We filtered the supernatants with a 0.4 μm polycarbonate filter. We took 20 mL aliquots from the filtrate for each sample split for MRP and total P analyses, and kept them refrigerated until analysis within 24 h. We added 200 mL of ultrapure water to the solid residue for each sample split as a wash step after the above reductive step, shook samples for 2 h, and then centrifuged them at 3,700 rpm for 15 min. We filtered the supernatants with 0.4 μm polycarbonate filters and set aside 20 mL of filtrate from each sample split for MRP and total P analyses. We then extracted the solid sample residues in 200 mL of sodium acetate buffer (pH 4.0) for 6 h. At the end of this extraction step, we centrifuged the bottles at 3,700 rpm for 15 min, filtered the supernatants with 0.4 μm polycarbonate filters and took a 20 mL aliquot of filtrate from each sample split for MRP and total P analyses. We added 200 mL of ultrapure water to the solid residue for each sample split as a wash step, shook samples for 2 h, and then centrifuged them at 3,700 rpm for 15 min.  We filtered the supernatants with 0.4 μm polycarbonate filters and set aside 20 mL of filtrate from each sample split for MRP and total P analyses. We repeated the water rinse step, and collected aliquots for MRP and total P analyses as in the previous steps. The concentrations of  MRP were determined as described below.

The MRP concentrations were measured on a QuikChem 8000 automated ion analyzer. Standards were prepared with the same solutions used for the extraction step to minimize matrix effects on P measurements. Sediment extracts and standards (0 – 30 μM PO4) were diluted ten-fold to prevent matrix interference with color development. The detection limit for P on this instrument is 0.2 μM. We derived MUP concentrations by subtracting MRP from total P concentrations, which are included in a different spreadsheet.

Processing Description

Data were processed in Excel.

BCO-DMO Data Manager Processing Notes:
* Data from originally submitted Excel file Data_MRP.xlsx exported as csv.  Sheets for step 1 and step 2 combined into one data table.  Values exported as formatted in excel with decimals with three decimal places.
* added a conventional header with dataset name, PI name, version date
* modified parameter names to conform with BCO-DMO naming conventions
* blank values in this dataset are displayed as “nd” for “no data.” nd is the default missing data identifier in the BCO-DMO system.
* Date format changed to ISO 8601 format yyyy-mm-dd

Instruments

QuikChem 8000 automated ion analyzer [Flow Injection Analyzer]
Details
An instrument that performs flow injection analysis. Flow injection analysis (FIA) is an approach to chemical analysis that is accomplished by injecting a plug of sample into a flowing carrier stream. FIA is an automated method in which a sample is injected into a continuous flow of a carrier solution that mixes with other continuously flowing solutions before reaching a detector. Precision is dramatically increased when FIA is used instead of manual injections and as a result very specific FIA systems have been developed for a wide array of analytical techniques.

Parameters

Extract [sample_descrip]
Details
Extract
Extraction solution
text description of sample collected
Details
Step
Step in the sequential extraction scheme (1–4)
text description of sample collected
Dilution [treatment]
Details
Dilution
Sample dilution or "None"

Experimental conditions applied to experimental units.  In comparative experiments, members of the complementary group, the control group, receive either no treatment or a standard treatment.

Date [date]
Details
Date
Date the samples were analyzed in ISO 8601 format yyyy-mm-dd

date; generally reported in GMT as YYYYMMDD (year; month; day); also as MMDD (month; day); EqPac dates are local Hawaii time. ISO_Date format is YYYY-MM-DD (http://www.iso.org/iso/home/standards/iso8601.htm)

Sample_ID [sample]
Details
Sample_ID
Unique sample identifier

unique sample identification or number; any combination of alpha numeric characters; precise definition is file dependent

Analyte_Name [sample_descrip]
Details
Analyte_Name
Element analyzed
text description of sample collected
Peak_Concentration [PO4]
Details
Peak_Concentration
Phosphate concentration (uncorrected)

Orthophosphate (phosphate, reactive phosphorus), Various units. 

Blank_corrected [sample_descrip]
Details
Blank_corrected

Concentration adjusted after blank

text description of sample collected
Actual_PO4 [PO4]
Details
Actual_PO4
Concentration corrected for dilution

Orthophosphate (phosphate, reactive phosphorus), Various units. 

P_extracted [PO4]
Details
P_extracted
Amount of phosphorus extracted

Orthophosphate (phosphate, reactive phosphorus), Various units. 

Sed_mass [mass_dry]
Details
Sed_mass
Dried sediment mass
mass of freeze-dried specimen
PO4 [PO4]
Details
PO4
Micromoles of phosphorus per gram of sediment (ground dry weight)

Orthophosphate (phosphate, reactive phosphorus), Various units. 

Peak_Area [unknown]
Details
Peak_Area

Peak area

association with a community-wide standard parameter is not yet defined
Peak_Height [unknown]
Details
Peak_Height

Peak height

association with a community-wide standard parameter is not yet defined

Dataset Maintainers

NameAffiliationContact
Adina PaytanUniversity of California-Santa Cruz (UC Santa Cruz)
Delphine DefforeyUniversity of California-Santa Cruz (UC Santa Cruz)
Amber YorkUniversity of California-Santa Cruz (UC Santa Cruz)
Amber YorkUniversity of California-Santa Cruz (UC Santa Cruz)
Amber YorkWoods Hole Oceanographic Institution (WHOI BCO-DMO)

BCO-DMO Project Info

Project Title Potential phosphorus uptake mechanisms of the deep sedimentary biosphere
Acronym Deep sea sediments
URLhttps://www.bco-dmo.org/project/664073
Created November 7, 2016
Modified November 7, 2016
Project Description

The goal of this project is to explore potential microbial P uptake mechanisms in marine sediments beneath the North Atlantic Gyre and their effects on the relative distribution of organic P compounds as a function of burial depth and changing redox conditions. We use a combination of metagenomic analyses and solution 31P nuclear magnetic resonance spectroscopy (31P NMR) to investigate (1) the presence of microbial functional genes pertaining to P uptake and metabolism and (2) the possible P substrates for the deep biosphere in these oligotrophic sediments.

NSF C-DEBI Award #156246 to Dr. Adina Paytan

NSF C-DEBI Award #157598 to Dr. Delphine Defforey 

Data Project Maintainers
NameAffiliationRole
Adina PaytanUniversity of California-Santa Cruz (UC Santa Cruz)Principal Investigator
Benjamin J. TullyTexas A&M University (TAMU)Co-Principal Investigator
Jason B. SylvanUniversity of Southern California (USC)Co-Principal Investigator
Delphine DefforeyUniversity of California-Santa Cruz (UC Santa Cruz)Co-Principal Investigator
Barbara J. Cade-MenunAgriculture and Agri-Food Canada (AGR GC)Co-Principal Investigator
Brandi Kiel ReeseTexas A&M, Corpus Christi (TAMU-CC)Co-Principal Investigator
Laura A. ZinkeUniversity of Southern California (USC)Co-Principal Investigator
Menu