Download URLhttps://www.bco-dmo.org/dataset/628208/data/download
Media Typeapplication/octet-stream
CreatedDecember 3, 2015
ModifiedOctober 5, 2016
StateFinal no updates expected
Brief DescriptionIllumina MiSeq amplicons of the V4 hyper variable region of 16S rRNA gene from IODP Expedition 336..

Acquisition Description

Samples were collected from Sites U1382, U1383, and U1384 during IODP Expedition 336.

In the home laboratory, rock samples were crushed in an ethanol- and UV-sterilized steel impact mortar and pestle (Chemplex, Palm City, FL, USA). The mass of rock used for DNA extraction ranged from 7-86 grams. Rock powders were split into 2 ml Lysing Matrix E tubes containing ceramic, silica, and glass beads (MP Biomedicals, Santa Ana, CA, USA). Each tube was filled with 978 ul sodium phosphate buffer and 122 ul MT buffer according to manufacturer protocols for the FastDNA Spin Kit (MP Biomedicals). The tubes were shaken in a FastPrep 24 instrument (MP Biomedicals) twice at a speed of 5.5 for 30 seconds to mechanically extract and homogenize DNA, and the DNA was removed according to manufacturer instructions. Replicate extracts of the same sample were combined and concentrated using an Eppendorf 5301 Vacufuge. To account for possible sample handling contamination of the low biomass samples, "blank" negative controls were also run through all steps as described above for the rock samples. Resultant DNA was quantified using the Qubit dsDNA HS Assay Kit on a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). The V4 hypervariable region of the 16S rRNA gene was amplified from DNA extracts by a commercial sequencing facility (Mr. DNA, Shallowater, TX) using the Illumina MiSeq platform. The 300bp × 2 kit was used with the Earth Microbiome Project primers (515f (5'-GTG CCA GCM GCC GCG GTA A) and 806r (5'-GGA CTA CHV GGG TWT CTA AT); (Caparaso et al. 2012)) to generate paired end reads. Illumina tag data were processed using mothur v.1.34.4 (Schloss et al. 2009) following the mothur Illumina MiSeq Standard Operating Procedure (Kozich et al. 2013). Briefly, paired end reads were joined into contigs, and any sequences with ambiguous base calls were removed. These were then aligned to the mothur-recreated SILVA SEED database from release v119 (Yarza et al. 2008). Sequences were then pre-clustered at the 1% dissimilarity level to mitigate the generation of spurious sequences, as recommended elsewhere (Kozich et al. 2013). Chimeras were screened with UCHIME using de novo mode (Edgar et al. 2011) and removed from further processing and analysis. Sequences were clustered into Operational Taxonomic Units (OTUs) at 3% sequence dissimilarity using the average neighbor method. A conservative OTU abundance cutoff threshold of 0.005% of total reads was used for filtering the full dataset before any downstream analysis, as previously suggested (Bokulich et al. 2013). The remaining filtered OTUs were classified using the SILVA Ribosomal 16S gene database (Quast et al. 2013). Closest environmental sequences to the OTUs were identified in the NCBI database using the BLAST algorithm (Altschul et al. 1997). OTUs recovered from the two protocol blanks, which may reflect contaminant DNA from the sample handling or sequencing steps, were removed from the dataset to provide the most conservative estimate of sequences from the deep biosphere, as has been done elsewhere (Inagaki et al. 2015).

Dataset Maintainers

Beth N. OrcuttBigelow Laboratory for Ocean Sciences
Shannon RauchWoods Hole Oceanographic Institution (WHOI BCO-DMO)

BCO-DMO Project Info

Project TitleIODP Expedition 336 Objective Research: The deep biosphere of young and oxic oceanic crust
AcronymNorth Pond basalts
CreatedSeptember 10, 2015
ModifiedSeptember 10, 2015
Project Description

Description from NSF award abstract:
The proposal addresses a fundamental aim of the ocean drilling program, namely to help characterize one of the largest and least studied ecosystems on Earth, the deep biosphere of the igneous crust buried below the ocean floor. The principal scientific objective of IODP expedition 336 is, in particular, to investigate the microbial population in basaltic crust from the North Pond area near the Mid-Atlantic Ridge. The study samples are weathered and porous basalts taken from beneath ~100 m of sediment in the North Pond area. The study proposes to determine both the diversity of the microbe population (using DNA) and its metabolic activity (using RNA). The PIs will investigate the relationship between microbes in the basement and those in the water column and determine which metabolic pathways are used by the deep basement microbes. The study will also provide baseline data for the long-term biological observatories installed in the sub-seafloor basement during expedition 336. Understanding deep biosphere life is a major thrust of the new IODP science plan and has implications for understanding the limits of life.

Project Maintainers
Beth N. OrcuttBigelow Laboratory for Ocean SciencesPrincipal Investigator
Katrina J. EdwardsUniversity of Southern California (USC)Co-Principal Investigator
Jason B. SylvanTexas A&M University (TAMU)Co-Principal Investigator
Heath J. MillsUniversity of Houston (UH-Clearlake)Co-Principal Investigator