Abstract
Globally, marine sediments are a vast repository of organic matter which is degraded through various microbial pathways, including polymer hydrolysis and monomer fermentation. The sources, abundances, and quality (i.e. labile or recalcitrant) of the organic matter and the composition of the microbial assemblages vary between sediments. Here, we examine new and previously published sediment metagenomes from the Baltic Sea and the nearby Kattegat to determine connections between geochemistry and the community potential to degrade organic carbon. Diverse organic matter hydrolysis encoding genes were present in sediments between 0.25 to 67 meters below seafloor, and were in higher relative abundances in those sediments that contained more organic matter. New analysis of previously published metatranscriptomes demonstrated that many of these genes were transcribed in two organic-rich Holocene sediments. Some of the variation in deduced pathways in the metagenomes correlated to carbon content and depositional conditions. Fermentation-related genes were found in all samples, and encoded for multiple fermentation strategies. Notably, genes conferring alcohol metabolism were amongst the most abundant of these genes, indicating this is an important but underappreciated aspect of sediment carbon cycling. This study is a step towards a more complete understanding of microbial food webs and the impacts of depositional facies on present sedimentary microbial communities.