Abstract
The microbial endosymbionts of two species of vestimentiferan tubeworms (Escarpia sp. and Lamellibrachia sp.2) collected from an area of low-temperature hydrothermal diffuse vent flow at the Mid-Cayman Rise (MCR) in the Caribbean Sea were characterized using microscopy, phylogenetic analyses, and a metagenomic approach. The present study adds new evidence that tubeworm endosymbionts can potentially switch from autotrophic to heterotrophic metabolism, or may be mixotrophic, presumably while free-living, and also suggests their versatile metabolic potential may enable both the host and symbionts to exploit a wide range of environmental conditions. Together, the marked gene content and sequence dissimilarity at the rRNA operon and whole genome level between vent and seep symbionts suggest these newly described endosymbionts from the MCR belong to a novel tubeworm endosymbiont genera, introduced as Candidatus Vondammii.